Harmonic cohomology classes of symplectic manifolds.
We introduce Hecke operators on de Rham cohomology of compact oriented manifolds. When the manifold is a quotient of a Hermitian symmetric domain, we prove that certain types of such operators are compatible with the usual Hecke operators on automorphic forms.
The phase space of general relativistic test particle is defined as the 1-jet space of motions. A Lorentzian metric defines the canonical contact structure on the odd-dimensional phase space. In the paper we study infinitesimal symmetries of the gravitational contact phase structure which are not generated by spacetime infinitesimal symmetries, i.e. they are hidden symmetries. We prove that Killing multivector fields admit hidden symmetries of the gravitational contact phase structure and we give...
A Cartan connection associated with a pair is defined in the usual manner except that only the injectivity of is required. For an -th order connection associated with a bundle morphism the concept of Cartan order is defined, which for , and coincides with the classical definition. Results are obtained concerning the Cartan order of -th order connections that are the product of first order (Cartan) connections.
We introduce an exchange natural isomorphism between iterated higher order jet functors depending on a classical linear connection on the base manifold. As an application we study the prolongation of higher order connections to jet bundles.
We describe how find all -natural operators transforming torsion free classical linear connections on -manifolds into -th order linear connections on .
We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.
We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.