The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 175

Showing per page

On ( 1 , 1 ) -tensor fields on symplectic manifolds

Anton Dekrét (1999)

Archivum Mathematicum

Two symplectic structures on a manifold M determine a (1,1)-tensor field on M . In this paper we study some properties of this field. Conversely, if A is (1,1)-tensor field on a symplectic manifold ( M , ω ) then using the natural lift theory we find conditions under which ω A , ω A ( X , Y ) = ω ( A X , Y ) , is symplectic.

On a generalization of Helmholtz conditions

Radka Malíková (2009)

Acta Mathematica Universitatis Ostraviensis

Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ( n = 1 ), and obtain a generalization of Helmholtz conditions to this case.

On a new normalization for tractor covariant derivatives

Matthias Hammerl, Petr Somberg, Vladimír Souček, Josef Šilhan (2012)

Journal of the European Mathematical Society

A regular normal parabolic geometry of type G / P on a manifold M gives rise to sequences D i of invariant differential operators, known as the curved version of the BGG resolution. These sequences are constructed from the normal covariant derivative ω on the corresponding tractor bundle V , where ω is the normal Cartan connection. The first operator D 0 in the sequence is overdetermined and it is well known that ω yields the prolongation of this operator in the homogeneous case M = G / P . Our first main result...

On algebraic solutions of algebraic Pfaff equations

Henryk Żołądek (1995)

Studia Mathematica

We give a new proof of Jouanolou’s theorem about non-existence of algebraic solutions to the system = z s , = x s , ż = y s . We also present some generalizations of the results of Darboux and Jouanolou about algebraic Pfaff forms with algebraic solutions.

Currently displaying 1 – 20 of 175

Page 1 Next