Ein Beitrag zur Lipschitz-Saturation im unendlichdimensionalen Fall
In this paper, we review several recent results dealing with elliptic equations with non local diffusion. More precisely, we investigate several problems involving the fractional laplacian. Finally, we present a conformally covariant operator and the associated singular and regular Yamabe problem.
In this paper we prove the existence of a closed neat embedding of a Hausdorff paracompact Hilbert manifold with smooth boundary into , where is a Hilbert space, such that the normal space in each point of a certain neighbourhood of the boundary is contained in . Then, we give a neccesary and sufficient condition that a Hausdorff paracompact topological space could admit a differentiable structure of class with smooth boundary.
Equivalence and zero sets of certain maps on infinite dimensional spaces are studied using an approach similar to the deformation lemma from the singularity theory.
We present the review of noncommutative symmetries applied to Connes' formulation of spectral triples. We introduce the notion of equivariant spectral triples with Hopf algebras as isometries of noncommutative manifolds, relate it to other elements of theory (equivariant K-theory, homology, equivariant differential algebras) and provide several examples of spectral triples with their isometries: isospectral (twisted) deformations (including noncommutative torus) and finite spectral triples.
Let M be a separable Finsler manifold of infinite dimension. Then it is proved, amongst other results, that under suitable conditions of local extensibility the germ of a function, or of a section of a vector bundle, on the union of a closed submanifold and a closed locally compact set in M, extends to a function on the whole of M.