Page 1

Displaying 1 – 11 of 11

Showing per page

Implicit functions from locally convex spaces to Banach spaces

Seppo Hiltunen (1999)

Studia Mathematica

We first generalize the classical implicit function theorem of Hildebrandt and Graves to the case where we have a Keller C Π k -map f defined on an open subset of E×F and with values in F, for E an arbitrary Hausdorff locally convex space and F a Banach space. As an application, we prove that under a certain transversality condition the preimage of a submanifold is a submanifold for a map from a Fréchet manifold to a Banach manifold.

Induced differential forms on manifolds of functions

Cornelia Vizman (2011)

Archivum Mathematicum

Differential forms on the Fréchet manifold ( S , M ) of smooth functions on a compact k -dimensional manifold S can be obtained in a natural way from pairs of differential forms on M and S by the hat pairing. Special cases are the transgression map Ω p ( M ) Ω p - k ( ( S , M ) ) (hat pairing with a constant function) and the bar map Ω p ( M ) Ω p ( ( S , M ) ) (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].

Infinite-dimensional hyperkähler manifolds associated with Hermitian-symmetric affine coadjoint orbits

Alice Barbara Tumpach (2009)

Annales de l’institut Fourier

In this paper, we construct a hyperkähler structure on the complexification 𝒪 of any Hermitian symmetric affine coadjoint orbit 𝒪 of a semi-simple L * -group of compact type, which is compatible with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of 𝒪 . By a relevant identification of the complex orbit 𝒪 with the cotangent space T 𝒪 of 𝒪 induced by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on T 𝒪 compatible with...

Integrating central extensions of Lie algebras via Lie 2-groups

Christoph Wockel, Chenchang Zhu (2016)

Journal of the European Mathematical Society

The purpose of this paper is to show how central extensions of (possibly infinite-dimensional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09, Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of Lie groups, a fact which is due to the vanishing of π 2 for each finite-dimensional Lie group. This fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group associated to each finite-dimensional...

Isometry invariant Finsler metrics on Hilbert spaces

Eugene Bilokopytov (2017)

Archivum Mathematicum

In this paper we study isometry-invariant Finsler metrics on inner product spaces over or , i.e. the Finsler metrics which do not change under the action of all isometries of the inner product space. We give a new proof of the analytic description of all such metrics. In this article the most general concept of the Finsler metric is considered without any additional assumptions that are usually built into its definition. However, we present refined versions of the described results for more specific...

Currently displaying 1 – 11 of 11

Page 1