Calcul différentiel généralisé
2000 Mathematics Subject Classification: 49J52, 49J50, 58C20, 26B09.We show that the properties of dense subdifferentiability and of trustworthiness are equivalent for any subdifferential satisfying a small set of natural axioms. The proof relies on a remarkable property of the subdifferential of the inf-convolution of two (non necessarily convex) functions. We also show the equivalence of the dense subdifferentiability property with other basic properties of subdifferentials such as a weak* Lipschitz...
In this article we formalized the Fréchet differentiation. It is defined as a generalization of the differentiation of a real-valued function of a single real variable to more general functions whose domain and range are subsets of normed spaces [14].
Zaj’ıček has recently shown that for a lower semi-continuous real-valued function on an Asplund space, the set of points where the function is Fréchet subdifferentiable but not Fréchet differentiable is first category. We introduce another variant of Fréchet differentiability, called Fréchet directional differentiability, and show that for any real-valued function on a normed linear space, the set of points where the function is Fréchet directionally differentiable but not Fréchet differentiable...
We describe a general axiomatic way to define functions of class Ck, k ∈ N∪{∞} on topological abelian groups. In the category of Banach spaces, this definition coincides with the usual one. The advantage of this axiomatic approach is that one can dispense with the notion of norms and limit procedures. The disadvantage is that one looses the derivative, which is replaced by a local linearizing factor. As an application we use this approach to define C∞ functions in the setting of graded/super manifolds....
Let (Ω,μ) be a measure space, E be an arbitrary separable Banach space, be the dual equipped with the weak* topology, and g:Ω × E → ℝ be a Carathéodory function which is Lipschitz continuous on each ball of E for almost all s ∈ Ω. Put . Consider the integral functional G defined on some non--type Banach space X of measurable functions x: Ω → E. We present several general theorems on sufficient conditions under which any element γ ∈ X* of Clarke’s generalized gradient (multivalued C-subgradient)...