Nash-Moser techniques for nonlinear boundary-value problems.
Let us consider two closed surfaces , of class and two functions , of class , called measuring functions. The natural pseudodistance between the pairs , is defined as the infimum of as varies in the set of all homeomorphisms from onto . In this paper we prove that the natural pseudodistance equals either , , or , where and are two suitable critical values of the measuring functions. This shows that a previous relation between the natural pseudodistance and critical values...
Examples exist of smooth maps on the boundary of a smooth manifold M which allow continuous extensions over M without fixed points but no such smooth extensions. Such maps are studied here in more detail. They have a minimal fixed point set when all transversally fixed maps in their homotopy class are considered. Therefore we introduce a Nielsen fixed point theory for transversally fixed maps on smooth manifolds without or with boundary, and use it to calculate the minimum number of fixed points...
This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.