Page 1

Displaying 1 – 20 of 20

Showing per page

Un teorema de extensión de Whitney en dimensión infinita y clase p.

Juan Margalef Roig, Enrique Outerelo Domínguez (1982)

Revista Matemática Hispanoamericana

Se prueba que si f es una aplicación de clase p en un abierto de un cuadrante de un espacio de Banach real, entonces en cada punto del abierto, f admite una extensión de clase p a un entorno global de dicho punto.Se utiliza este resultado para establecer un teorema de extensión de Whitney en un cuadrante de un espacio de Banach y un teorema de la función inversa en variedades con borde anguloso.

Un théorème de fonctions implicites. Applications

Francis Sergeraert (1973)

Annales de l'institut Fourier

On énonce un théorème de fonctions implicites du type de Nash-Moser, et on indique une application à l’étude des singularités de fonctions différentiables réelles (problème du déploiement universel de Thom).

Una variedad diferenciable de dimensión infinita, separada y no regular.

Juan Margalef Roig, Enrique Outerelo Domínguez (1982)

Revista Matemática Hispanoamericana

A partir de un espacio de Hilbert, E, de dimensión infinita separable y de un elemento λ de L(E,R) - {0} se construye un homeomorfismo h0 de(Eλ+ - Ker λ) U {0}sobre E con las topologías usuales tal que h0(0) = 0 y h0|Eλ+ - Ker λ es un difeomorfismo de clase ∞ de Eλ+ - Ker λ sobre E - {0}, con las estructuras diferenciables de clase ∞ usuales. Mediante h0 se construye una variedad diferenciable de dimensión infinita, separada y no regular.

Undirected and directed graphs with near polynomial growth

V.I. Trofimov (2003)

Discussiones Mathematicae Graph Theory

The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding in- and out-degrees are described in the case their growth functions are near polynomial.

Unfoldings of foliations with multiform first integrals

Tatsuo Suwa (1983)

Annales de l'institut Fourier

Let F = ( ω ) be a codim 1 local foliation generated by a germ ω of the form ω = f 1 ... f p i = 1 p λ i d f i f i for some complex numbers λ i and germs f i of holomorphic functions at the origin in C n . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of F . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for F is equivalent to the unfolding theory for the multiform function...

Currently displaying 1 – 20 of 20

Page 1