Über nichtlineare Spektral- und Störungstheorie.
Se prueba que si f es una aplicación de clase p en un abierto de un cuadrante de un espacio de Banach real, entonces en cada punto del abierto, f admite una extensión de clase p a un entorno global de dicho punto.Se utiliza este resultado para establecer un teorema de extensión de Whitney en un cuadrante de un espacio de Banach y un teorema de la función inversa en variedades con borde anguloso.
On énonce un théorème de fonctions implicites du type de Nash-Moser, et on indique une application à l’étude des singularités de fonctions différentiables réelles (problème du déploiement universel de Thom).
A partir de un espacio de Hilbert, E, de dimensión infinita separable y de un elemento λ de L(E,R) - {0} se construye un homeomorfismo h0 de(Eλ+ - Ker λ) U {0}sobre E con las topologías usuales tal que h0(0) = 0 y h0|Eλ+ - Ker λ es un difeomorfismo de clase ∞ de Eλ+ - Ker λ sobre E - {0}, con las estructuras diferenciables de clase ∞ usuales. Mediante h0 se construye una variedad diferenciable de dimensión infinita, separada y no regular.
The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding in- and out-degrees are described in the case their growth functions are near polynomial.
Let be a codim 1 local foliation generated by a germ of the form for some complex numbers and germs of holomorphic functions at the origin in . We determine, under some conditions, the set of equivalence classes of first order unfoldings and construct explicitly a universal unfolding of . Special cases of this include foliations with holomorphic or meromorphic first integrals. We also show that the unfolding theory for is equivalent to the unfolding theory for the multiform function...