Funkcionální rovnice v nelineární analýze. Věnováno G. Prodimu, velkému učiteli a drahému příteli.
Let be a holomorphic family of functions. If , is an analytic variety then is a natural generalization of the bifurcation variety of G. We investigate the local structure of for locally trivial deformations of . In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.
This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.
We present some results concerning the problem , in , , where , , and is a smooth bounded domain containing the origin. In particular, bifurcation and uniqueness results are discussed.
We study the Ambrosetti–Prodi and Ambrosetti–Rabinowitz problems.We prove for the first one the existence of a continuum of solutions with shape of a reflected (-shape). Next, we show that there is a relationship between these two problems.