Displaying 101 – 120 of 157

Showing per page

On the first homology of automorphism groups of manifolds with geometric structures

Kōjun Abe, Kazuhiko Fukui (2005)

Open Mathematics

Hermann and Thurston proved that the group of diffeomorphisms with compact support of a smooth manifold M which are isotopic to the identity is a perfect group. We consider the case where M has a geometric structure. In this paper we shall survey on the recent results of the first homology of the diffeomorphism groups which preserve a smooth G-action or a foliated structure on M. We also work in Lipschitz category.

On the functorial prolongations of principal bundles

Ivan Kolář, Antonella Cabras (2006)

Commentationes Mathematicae Universitatis Carolinae

We describe the fundamental properties of the infinitesimal actions related with functorial prolongations of principal and associated bundles with respect to fiber product preserving bundle functors. Our approach is essentially based on the Weil algebra technique and an original concept of weak principal bundle.

On the geometric prequantization of brackets.

Manuel de León, Juan Carlos Marrero, Edith Padrón (2001)

RACSAM

En este artículo se considera un marco general para la precuantización geométrica de una variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliación generalizada permite definir una noción de fibrado de precuantización. Se estudia una aproximación alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.

On the linearization theorem for proper Lie groupoids

Marius Crainic, Ivan Struchiner (2013)

Annales scientifiques de l'École Normale Supérieure

We revisit the linearization theorems for proper Lie groupoids around general orbits (statements and proofs). In the fixed point case (known as Zung’s theorem) we give a shorter and more geometric proof, based on a Moser deformation argument. The passage to general orbits (Weinstein) is given a more conceptual interpretation: as a manifestation of Morita invariance. We also clarify the precise statements of the Linearization Theorem (there has been some confusion on this, which has propagated throughout...

On the real secondary classes of transversely holomorphic foliations

Taro Asuke (2000)

Annales de l'institut Fourier

In this paper we study the real secondary classes of transversely holomorphic foliations. We define a homomorphism from the space H * ( WO 2 q ) of the real secondary classes to the space H * ( WU q ) of the complex secondary classes that corresponds to forgetting the transverse holomorphic structure. By using this homomorphism we show, for example, the decomposition of the Godbillon-Vey class into the imaginary part of the Bott class and the first Chern class of the complex normal bundle of the foliation. We show also...

Particles, phases, fields

L. Wojtczak, A. Urbaniak-Kucharczyk, I. Zasada, J. Rutkowski (1996)

Banach Center Publications

The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is...

Principal bundles, groupoids, and connections

Anders Kock (2007)

Banach Center Publications

We clarify in which precise sense the theory of principal bundles and the theory of groupoids are equivalent; and how this equivalence of theories, in the differentiable case, reflects itself in the theory of connections. The method used is that of synthetic differential geometry.

Pseudogroupes complexes quasi parallélisés de dimension un

Vincent Cavalier (1994)

Annales de l'institut Fourier

L’objet de ce travail est la classification, à équivalence près, des pseudogroupes de transformations holomorphes, en dimension un, qui laissent invariant un champ de vecteurs méromorphe; on les suppose en outre de génération compacte, au sens de A. Haefliger. Ces pseudogroupes apparaissent dans l’étude des feuilletages transversalement holomorphes, sur des variétés compactes, pourvus d’un champ feuilleté méromorphe. Les principaux résultats sont les théorèmes 3.2 et 4.11, qui en donnent une classification...

Currently displaying 101 – 120 of 157