How to produce a Ricci flow via Cheeger–Gromoll exhaustion
We prove short time existence for the Ricci flow on open manifolds of non-negative complex sectional curvature without requiring upper curvature bounds. By considering the doubling of convex sets contained in a Cheeger–Gromoll convex exhaustion and solving the singular initial value problem for the Ricci flow on these closed manifolds, we obtain a sequence of closed solutions of the Ricci flow with non-negative complex sectional curvature which subconverge to a Ricci flow on the open manifold. Furthermore,...