Page 1

Displaying 1 – 7 of 7

Showing per page

Random walks on finite rank solvable groups

Ch. Pittet, Laurent Saloff-Coste (2003)

Journal of the European Mathematical Society

We establish the lower bound p 2 t ( e , e ) exp ( t 1 / 3 ) , for the large times asymptotic behaviours of the probabilities p 2 t ( e , e ) of return to the origin at even times 2 t , for random walks associated with finite symmetric generating sets of solvable groups of finite Prüfer rank. (A group has finite Prüfer rank if there is an integer r , such that any of its finitely generated subgroup admits a generating set of cardinality less or equal to r .)

Riesz meets Sobolev

Thierry Coulhon, Adam Sikora (2010)

Colloquium Mathematicae

We show that the L p boundedness, p > 2, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.

Riesz potentials and amalgams

Michael Cowling, Stefano Meda, Roberta Pasquale (1999)

Annales de l'institut Fourier

Let ( M , d ) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q ( M ) is a space which looks locally like L p ( M ) but globally like L q ( M ) . We consider the case where the measure μ ( B ( x , ρ ) of the ball B ( x , ρ ) with centre x and radius ρ behaves like a polynomial in ρ , and consider the mapping properties between amalgams of kernel operators where the kernel ker K ( x , y ) behaves like d ( x , y ) - a when d ( x , y ) 1 and like d ( x , y ) - b when d ( x , y ) 1 . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...

Riesz transform on manifolds and Poincaré inequalitie

Pascal Auscher, Thierry Coulhon (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the validity of the L p inequality for the Riesz transform when p > 2 and of its reverse inequality when 1 < p < 2 on complete riemannian manifolds under the doubling property and some Poincaré inequalities.

Riesz transforms on connected sums

Gilles Carron (2007)

Annales de l’institut Fourier

Assume that M 0 is a complete Riemannian manifold with Ricci curvature bounded from below and that M 0 satisfies a Sobolev inequality of dimension ν > 3 . Let M be a complete Riemannian manifold isometric at infinity to M 0 and let p ( ν / ( ν - 1 ) , ν ) . The boundedness of the Riesz transform of L p ( M 0 ) then implies the boundedness of the Riesz transform of L p ( M )

Currently displaying 1 – 7 of 7

Page 1