Page 1

Displaying 1 – 14 of 14

Showing per page

On analytic torsion over C*-algebras

Alan Carey, Varghese Mathai, Alexander Mishchenko (1999)

Banach Center Publications

In this paper, we present an analytic definition for the relative torsion for flat C*-algebra bundles over a compact manifold. The advantage of such a relative torsion is that it is defined without any hypotheses on the flat C*-algebra bundle. In the case where the flat C*-algebra bundle is of determinant class, we relate it easily to the L^2 torsion as defined in [7],[5].

On the Curvature and Heat Flow on Hamiltonian Systems

Shin-ichi Ohta (2014)

Analysis and Geometry in Metric Spaces

We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.

On the relation between elliptic and parabolic Harnack inequalities

Waldemar Hebisch, Laurent Saloff-Coste (2001)

Annales de l’institut Fourier

We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to imply the parabolic Harnack inequality in question; both are necessary conditions. As an application, we show the equivalence between parabolic Harnack inequality for Δ on M , (i.e., for t + Δ ) and elliptic Harnack inequality for - t 2 + Δ on × M .

On the Schrödinger heat kernel in horn-shaped domains

Gabriele Grillo (2004)

Colloquium Mathematicae

We prove pointwise lower bounds for the heat kernel of Schrödinger semigroups on Euclidean domains under Dirichlet boundary conditions. The bounds take into account non-Gaussian corrections for the kernel due to the geometry of the domain. The results are applied to prove a general lower bound for the Schrödinger heat kernel in horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semigroup.

Optimal heat kernel bounds under logarithmic Sobolev inequalities

Dominique Bakry, Daniel Concordet, Michel Ledoux (2010)

ESAIM: Probability and Statistics

We establish optimal uniform upper estimates on heat kernels whose generators satisfy a logarithmic Sobolev inequality (or entropy-energy inequality) with the optimal constant of the Euclidean space. Off-diagonals estimates may also be obtained with however a smaller d istance involving harmonic functions. In the last part, we apply these methods to study some heat kernel decays for diffusion operators of the type Laplacian minus the gradient of a smooth potential with a given growth at infinity....

Currently displaying 1 – 14 of 14

Page 1