Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses.
We prove the existence of solutions to nonlinear parabolic problems of the following type: where is a strictly increasing function of class , the term is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, is a Carathéodory, noncoercive function which satisfies the following condition: for all , where is the Musielak complementary function of , and the second term belongs to .
We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...