Page 1

Displaying 1 – 11 of 11

Showing per page

Entropy solutions to parabolic equations in Musielak framework involving non coercivity term in divergence form

Mohamed Saad Bouh Elemine Vall, Ahmed Ahmed, Abdelfattah Touzani, Abdelmoujib Benkirane (2018)

Mathematica Bohemica

We prove the existence of solutions to nonlinear parabolic problems of the following type: b ( u ) t + A ( u ) = f + div ( Θ ( x ; t ; u ) ) in Q , u ( x ; t ) = 0 on Ω × [ 0 ; T ] , b ( u ) ( t = 0 ) = b ( u 0 ) on Ω , where b : is a strictly increasing function of class 𝒞 1 , the term A ( u ) = - div ( a ( x , t , u , u ) ) is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, Θ : Ω × [ 0 ; T ] × is a Carathéodory, noncoercive function which satisfies the following condition: sup | s | k | Θ ( · , · , s ) | E ψ ( Q ) for all k > 0 , where ψ is the Musielak complementary function of Θ , and the second term f belongs to L 1 ( Q ) .

Evolution of convex entire graphs by curvature flows

Roberta Alessandroni, Carlo Sinestrari (2015)

Geometric Flows

We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...

Currently displaying 1 – 11 of 11

Page 1