Displaying 81 – 100 of 140

Showing per page

On the Paneitz energy on standard three sphere

Paul Yang, Meijun Zhu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove that the Paneitz energy on the standard three-sphere S3 is bounded from below and extremal metrics must be conformally equivalent to the standard metric.

Prescribing Q -curvature on higher dimensional spheres

Khalil El Mehdi (2005)

Annales mathématiques Blaise Pascal

We study the problem of prescribing a fourth order conformal invariant on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results.

Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces

Hassan Boualem, Marc Herzlich (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.

Semiholonomic jets and induced modules in Cartan geometry calculus

Jan Slovák, Vladimír Souček (2024)

Archivum Mathematicum

The famous Erlangen Programme was coined by Felix Klein in 1872 as an algebraic approach allowing to incorporate fixed symmetry groups as the core ingredient for geometric analysis, seeing the chosen symmetries as intrinsic invariance of all objects and tools. This idea was broadened essentially by Elie Cartan in the beginning of the last century, and we may consider (curved) geometries as modelled over certain (flat) Klein’s models. The aim of this short survey is to explain carefully the basic...

Sobolev-Kantorovich Inequalities

Michel Ledoux (2015)

Analysis and Geometry in Metric Spaces

In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established in the rather large setting of non-negatively curved (weighted) Riemannian manifolds by means...

Currently displaying 81 – 100 of 140