On the Independence of Exit Time and Exit Position from Small Geodesic Balls for Brownian Motions on Riemannian Manifolds.
Masanori Kôzaki, Yukio Ogura (1988)
Mathematische Zeitschrift
Gliklikh, Yu.E., Morozova, L.A. (2002)
Abstract and Applied Analysis
Le, Huiling (2001)
International Journal of Mathematics and Mathematical Sciences
Waldemar Hebisch, Laurent Saloff-Coste (2001)
Annales de l’institut Fourier
We show that, if a certain Sobolev inequality holds, then a scale-invariant elliptic Harnack inequality suffices to imply its a priori stronger parabolic counterpart. Neither the relative Sobolev inequality nor the elliptic Harnack inequality alone suffices to imply the parabolic Harnack inequality in question; both are necessary conditions. As an application, we show the equivalence between parabolic Harnack inequality for on , (i.e., for ) and elliptic Harnack inequality for on .
Michel Émery (1990)
Séminaire de probabilités de Strasbourg
Bernard Gaveau, Edmond Mazet (1981)
Annales de l'I.H.P. Physique théorique
D. Bakry, D. Concordet, M. Ledoux (1997)
ESAIM: Probability and Statistics
Dominique Bakry, Daniel Concordet, Michel Ledoux (2010)
ESAIM: Probability and Statistics
We establish optimal uniform upper estimates on heat kernels whose generators satisfy a logarithmic Sobolev inequality (or entropy-energy inequality) with the optimal constant of the Euclidean space. Off-diagonals estimates may also be obtained with however a smaller d istance involving harmonic functions. In the last part, we apply these methods to study some heat kernel decays for diffusion operators of the type Laplacian minus the gradient of a smooth potential with a given growth at infinity....
T Byczkowski, P. Graczyk, A. Stós (2007)
Revista Matemática Iberoamericana
V. M. Petkov (1990/1991)
Séminaire Équations aux dérivées partielles (Polytechnique)
Colette Anne (1984/1985)
Séminaire de théorie spectrale et géométrie
Serge Cohen, Anne Estrade (1998)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Monique Pontier, Anne Estrade (1992)
Séminaire de probabilités de Strasbourg
Sheng-Wu He, Wei-An Zheng (1984)
Séminaire de probabilités de Strasbourg
Xiang Dong Li (2006)
Revista Matemática Iberoamericana
Gareth C. Price, David Williams (1983)
Séminaire de probabilités de Strasbourg
Michel Benaïm, Olivier Raimond (2003)
Annales de l'I.H.P. Probabilités et statistiques
Wei-An Zheng (1982)
Séminaire de probabilités de Strasbourg
Kamil Bogus, Tomasz Byczkowski, Jacek Małecki (2015)
Studia Mathematica
The main objective of the work is to provide sharp two-sided estimates of the λ-Green function, λ ≥ 0, of the hyperbolic Brownian motion of a half-space. We rely on the recent results obtained by K. Bogus and J. Małecki (2015), regarding precise estimates of the Bessel heat kernel for half-lines. We also substantially use the results of H. Matsumoto and M. Yor (2005) on distributions of exponential functionals of Brownian motion.
Sévérien Nkurunziza (2012)
ESAIM: Probability and Statistics
In this paper, we are interested in estimation problem for the drift parameters matrices of m independent multivariate diffusion processes. More specifically, we consider the case where the m-parameters matrices are supposed to satisfy some uncertain constraints. Given such an uncertainty, we develop shrinkage estimators which improve over the performance of the maximum likelihood estimator (MLE). Under an asymptotic distributional quadratic risk criterion, we study the relative dominance of the...