Barycentres convexes et approximations des martingales continues dans les variétés
We develop a procedure that allows us to “descretise” the Brownian motion on a Riemannian manifold. We construct thus a random walk that is a good approximation of the Brownian motion.
In this paper I consider a covering of a Riemannian manifold . I prove that Green’s function exists on if any and only if the symmetric translation invariant random walks on the covering group are transient (under the assumption that is compact).
We generalize brownian motion on a riemannian manifold to the case of a family of metrics which depends on time. Such questions are natural for equations like the heat equation with respect to time dependent laplacians (inhomogeneous diffusions). In this paper we are in particular interested in the Ricci flow which provides an intrinsic family of time dependent metrics. We give a notion of parallel transport along this brownian motion, and establish a generalization of the Dohrn–Guerra or damped...