Displaying 101 – 120 of 285

Showing per page

Invertible polynomial mappings via Newton non-degeneracy

Ying Chen, Luis Renato G. Dias, Kiyoshi Takeuchi, Mihai Tibăr (2014)

Annales de l’institut Fourier

We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.

Le théorème de M. Sebastiani pour une singularité quasi-homogène isolée

Jean-Pierre Françoise (1979)

Annales de l'institut Fourier

Dans cet article, on donne une démonstration explicite du théorème de M. Sebastiani, sur la liberté du C { p } module G = Ω n / d P d Ω n - 2 associé à un germe à singularité isolée, lorsque P est quasi homogène.Il se distingue, dans ce cas, une base et les fonctions composantes d’un élément de G sont produites par un algorithme dont on prouve la convergence avec le théorème des voisinages privilégiés de B. Malgrange.

Local reduction theorems and invariants for singular contact structures

Bronislaw Jakubczyk, Michail Zhitomirskii (2001)

Annales de l’institut Fourier

A differential 1-form on a ( 2 k + 1 ) -dimensional manifolds M defines a singular contact structure if the set S of points where the contact condition is not satisfied, S = { p M : ( ω ( d ω ) k ( p ) = 0 } , is nowhere dense in M . Then S is a hypersurface with singularities and the restriction of ω to S can be defined. Our first theorem states that in the holomorphic, real-analytic, and smooth categories the germ of Pfaffian equation ( ω ) generated by ω is determined, up to a diffeomorphism, by its restriction to S , if we eliminate certain degenerated singularities...

Local symplectic algebra of quasi-homogeneous curves

Wojciech Domitrz (2009)

Fundamenta Mathematicae

We study the local symplectic algebra of parameterized curves introduced by V. I. Arnold. We use the method of algebraic restrictions to classify symplectic singularities of quasi-homogeneous curves. We prove that the space of algebraic restrictions of closed 2-forms to the germ of a 𝕂-analytic curve is a finite-dimensional vector space. We also show that the action of local diffeomorphisms preserving the quasi-homogeneous curve on this vector space is determined by the infinitesimal action of...

Logarithmic structure of the generalized bifurcation set

S. Janeczko (1996)

Annales Polonici Mathematici

Let G : n × r be a holomorphic family of functions. If Λ n × r , π r : n × r r is an analytic variety then    Q Λ ( G ) = ( x , u ) n × r : G ( · , u ) h a s a c r i t i c a l p o i n t i n Λ π r - 1 ( u ) is a natural generalization of the bifurcation variety of G. We investigate the local structure of Q Λ ( G ) for locally trivial deformations of Λ = π r - 1 ( 0 ) . In particular, we construct an algorithm for determining logarithmic stratifications provided G is versal.

Modified Nash triviality of a family of zero-sets of real polynomial mappings

Toshizumi Fukui, Satoshi Koike, Masahiro Shiota (1998)

Annales de l'institut Fourier

In this paper we introduce the notion of modified Nash triviality for a family of zero sets of real polynomial map-germs as a desirable one. We first give a Nash isotopy lemma which is a useful tool to show triviality.Then, using it, we prove two types of modified Nash triviality theorem and a finite classification theorem for this triviality. These theorems strengthen similar topological results.

Modules pour les familles de courbes planes

Jean-Paul Dufour (1989)

Annales de l'institut Fourier

L’étude des familles de courbes plane différentiables se ramène a celle des diagrammes f S σ 2 S est une surface, f et σ étant différentiables. Dans la classification de ces diagrammes à équivalence près il apparaît trois types de modules: des modules locaux attachés à chaque fronce de σ , des modules semi-locaux attachés à la superposition en un même point de plusieurs situations locales, des modules globaux attachés aux “courbes de contact” le long desquelles certaines courbes sont tangentes. Nous explicitons...

Monge-Ampère equations and surfaces with negative Gaussian curvature

Mikio Tsuji (1997)

Banach Center Publications

In [24], we studied the singularities of solutions of Monge-Ampère equations of hyperbolic type. Then we saw that the singularities of solutions do not coincide with the singularities of solution surfaces. In this note we first study the singularities of solution surfaces. Next, as the applications, we consider the singularities of surfaces with negative Gaussian curvature. Our problems are as follows: 1) What kinds of singularities may appear?, and 2) How can we extend the surfaces beyond the singularities?...

Currently displaying 101 – 120 of 285