Recursive classification of pseudo-random sequences
Relative conditional expectations on a logic
In this paper, the authors introduce the notion of conditional expectation of an observable on a logic with respect to a sublogic, in a state , relative to an element of the logic. This conditional expectation is an analogue of the expectation of an integrable function on a probability space.
Rings of maps: sequential convergence and completion
The ring of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring of all continuous functions and, similarly, the ring of all Borel measurable subsets of is a sequential ring completion of the subring of all finite unions of half-open intervals; the two completions are not categorical. We study -rings of maps and develop a completion theory covering the two examples. In particular, the -fields of sets form an epireflective...
Separation metrics for real-valued random variables.
Some comments on quantum probability
Statistical maps. I: Basic properties
Statistical maps. II: Operational random variables and the Bell phenomenon
Stochastic processes and applications to countably additive restriction of group-valued finitely additive measures.
As an application of a theorem concerning a general stochastic process in a finitely additive probability space, the existence of non-atomic countably additive restrictions with large range is obtained for group-valued finitely additive measures.
Stochastic signal codification and sigma transform.
In the last years, a relation between bounded real functions of one variable and two-valued probabilistic functions defined on the complex plane has been established through the introduction of the Sigma-Transform concept.The paper presents an extension of the concept of Sigma-Transform, giving rise to the diagonal Sigma-Transform and the Striped Sigma-Transform which, when combined, allow a formal treatment of the Multichannel Stochastic Signal Codification. An application of the method to error...
Submedidas C y cuantificación de probabilidades comparativas.
De los axiomas de Villegas para probabilidades comparativas, el de continuidad monótona resulta suficiente para la compatibilidad con una submedida C (Ortiz, 1980, Teo. 8), mientras que el axioma de no existencia de átomos, junto con el anterior, caracteriza la subclase de probabilidades comparativas sin átomos que pueden representarse mediante medidas de probabilidad. El estudio de las propiedades de las submedidas C nos conduce a proponer en este trabajo un nuevo axioma, que junto al de continuidad...
Sum of observables in fuzzy quantum spaces
We introduce the sum of observables in fuzzy quantum spaces which generalize the Kolmogorov probability space using the ideas of fuzzy set theory.
Sur l'existence des suites de variables aléatoires s à s indépendantes échangeables ou stationnaires
The analogues of entropy and of Fisher's information measure in free probability theory, II.
The closeness of the range of a probability on a certain system of random events -- an elementary proof.
The fuzzy hyperbolic inequality index of fuzzy random variables in finite populations.
This paper presents an approach to the problem of quantifying the inequality of a finite population with respect to a (social, economical, etc.) fuzzy-valued attribute. For this purpose, the fuzzy hyperbolic inequality index is introduced, and some properties extending the basic ones for real-valued attributes are examined.
The irrelevant information principle for collective probabilistic reasoning
Within the framework of discrete probabilistic uncertain reasoning a large literature exists justifying the maximum entropy inference process, , as being optimal in the context of a single agent whose subjective probabilistic knowledge base is consistent. In particular Paris and Vencovská completely characterised the inference process by means of an attractive set of axioms which an inference process should satisfy. More recently the second author extended the Paris-Vencovská axiomatic approach...
The measure-theoretical approach to -adic probability theory
Two Kinds of Invariance of Full Conditional Probabilities
Let G be a group acting on Ω and ℱ a G-invariant algebra of subsets of Ω. A full conditional probability on ℱ is a function P: ℱ × (ℱ∖{∅}) → [0,1] satisfying the obvious axioms (with only finite additivity). It is weakly G-invariant provided that P(gA|gB) = P(A|B) for all g ∈ G and A,B ∈ ℱ, and strongly G-invariant provided that P(gA|B) = P(A|B) whenever g ∈ G and A ∪ gA ⊆ B. Armstrong (1989) claimed that weak and strong invariance are equivalent, but we shall show that this is false and that weak...
Una aplicación de la teoría de la utilidad de Von Neumann a la probabilidad subjetiva.
En este artículo se da una condición necesaria y suficiente para la existencia y unicidad de una probabilidad subjetiva, finitamente aditiva, que concuerda con una probabilidad comparativa definida en una cierta clase de sucesos asociada al espacio paramétrico objeto de la inferencia.Nuestra constribución no evita tener que postular la relación de probabilidad comparativa en una clase mayor que la que es objeto de nuestro estudio pues exige la introducción de un espacio auxiliar que es el intervalo...