Displaying 761 – 780 of 1112

Showing per page

Semigroup actions on tori and stationary measures on projective spaces

Yves Guivarc'h, Roman Urban (2005)

Studia Mathematica

Let Γ be a subsemigroup of G = GL(d,ℝ), d > 1. We assume that the action of Γ on d is strongly irreducible and that Γ contains a proximal and quasi-expanding element. We describe contraction properties of the dynamics of Γ on d at infinity. This amounts to the consideration of the action of Γ on some compact homogeneous spaces of G, which are extensions of the projective space d - 1 . In the case where Γ is a subsemigroup of GL(d,ℝ) ∩ M(d,ℤ) and Γ has the above properties, we deduce that the Γ-orbits...

Shuffles of Min.

Piotr Mikusinski, Howard Sherwood, Michael D. Taylor (1992)

Stochastica

Copulas are functions which join the margins to produce a joint distribution function. A special class of copulas called shuffles of Min is shown to be dense in the collection of all copulas. Each shuffle of Min is interpreted probabilistically. Using the above-mentioned results, it is proved that the joint distribution of any two continuously distributed random variables X and Y can be approximated uniformly, arbitrarily closely by the joint distribution of another pair X* and Y* each of which...

Simple fractions and linear decomposition of some convolutions of measures

Jolanta K. Misiewicz, Roger Cooke (2001)

Discussiones Mathematicae Probability and Statistics

Every characteristic function φ can be written in the following way: φ(ξ) = 1/(h(ξ) + 1), where h(ξ) = ⎧ 1/φ(ξ) - 1 if φ(ξ) ≠ 0 ⎨ ⎩ ∞ if φ(ξ) = 0 This simple remark implies that every characteristic function can be treated as a simple fraction of the function h(ξ). In the paper, we consider a class C(φ) of all characteristic functions of the form φ a ( ξ ) = [ a / ( h ( ξ ) + a ) ] , where φ(ξ) is a fixed characteristic function. Using the well known theorem on simple fraction decomposition of rational functions we obtain that convolutions...

Currently displaying 761 – 780 of 1112