Displaying 301 – 320 of 425

Showing per page

Semicopulas: characterizations and applicability

Fabrizio Durante, José Quesada-Molina, Carlo Sempi (2006)

Kybernetika

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.

Seven Proofs for the Subadditivity of Expected Shortfall

Paul Embrechts, Ruodu Wang (2015)

Dependence Modeling

Subadditivity is the key property which distinguishes the popular risk measures Value-at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subadditivity of ES, some found in the literature and some not. One of the main objectives of this paper is to provide a general guideline for instructors to teach the subadditivity of ES in a course. We discuss the merits and suggest appropriate contexts for each proof.With different proofs, different important properties of ES are...

Sharp bounds for expectations of spacings from decreasing density and failure rate families

Katarzyna Danielak, Tomasz Rychlik (2004)

Applicationes Mathematicae

We apply the method of projecting functions onto convex cones in Hilbert spaces to derive sharp upper bounds for the expectations of spacings from i.i.d. samples coming from restricted families of distributions. Two families are considered: distributions with decreasing density and with decreasing failure rate. We also characterize the distributions for which the bounds are attained.

Sharp moment inequalities for differentially subordinated martingales

Adam Osękowski (2010)

Studia Mathematica

We determine the optimal constants C p , q in the moment inequalities | | g | | p C p , q | | f | | q , 1 ≤ p< q< ∞, where f = (fₙ), g = (gₙ) are two martingales, adapted to the same filtration, satisfying |dgₙ| ≤ |dfₙ|, n = 0,1,2,..., with probability 1. Furthermore, we establish related sharp estimates ||g||₁ ≤ supₙΦ(|fₙ|) + L(Φ), where Φ is an increasing convex function satisfying certain growth conditions and L(Φ) depends only on Φ.

Shift inequalities of Gaussian type and norms of barycentres

F. Barthe, D. Cordero-Erausquin, M. Fradelizi (2001)

Studia Mathematica

We derive the equivalence of different forms of Gaussian type shift inequalities. This completes previous results by Bobkov. Our argument strongly relies on the Gaussian model for which we give a geometric approach in terms of norms of barycentres. Similar inequalities hold in the discrete setting; they improve the known results on the so-called isodiametral problem for the discrete cube. The study of norms of barycentres for subsets of convex bodies completes the exposition.

Small ball probability estimates in terms of width

Rafał Latała, Krzysztof Oleszkiewicz (2005)

Studia Mathematica

A certain inequality conjectured by Vershynin is studied. It is proved that for any symmetric convex body K ⊆ ℝⁿ with inradius w and γₙ(K) ≤ 1/2 we have γ ( s K ) ( 2 s ) w ² / 4 γ ( K ) for any s ∈ [0,1], where γₙ is the standard Gaussian probability measure. Some natural corollaries are deduced. Another conjecture of Vershynin is proved to be false.

Sobolev inequalities for probability measures on the real line

F. Barthe, C. Roberto (2003)

Studia Mathematica

We give a characterization of those probability measures on the real line which satisfy certain Sobolev inequalities. Our starting point is a simpler approach to the Bobkov-Götze characterization of measures satisfying a logarithmic Sobolev inequality. As an application of the criterion we present a soft proof of the Latała-Oleszkiewicz inequality for exponential measures, and describe the measures on the line which have the same property. New concentration inequalities for product measures follow....

Some ideas for comparison of Bellman chains

Laurent Truffet (2003)

Kybernetika

In this paper we are exploiting some similarities between Markov and Bellman processes and we introduce the main concepts of the paper: comparison of performance measures, and monotonicity of Bellman chains. These concepts are used to establish the main result of this paper dealing with comparison of Bellman chains.

Currently displaying 301 – 320 of 425