Displaying 161 – 180 of 1158

Showing per page

Are law-invariant risk functions concave on distributions?

Beatrice Acciaio, Gregor Svindland (2013)

Dependence Modeling

While it is reasonable to assume that convex combinations on the level of random variables lead to a reduction of risk (diversification effect), this is no more true on the level of distributions. In the latter case, taking convex combinations corresponds to adding a risk factor. Hence, whereas asking for convexity of risk functions defined on random variables makes sense, convexity is not a good property to require on risk functions defined on distributions. In this paper we study the interplay...

Asymmetric semilinear copulas

Bernard De Baets, Hans De Meyer, Radko Mesiar (2007)

Kybernetika

We complement the recently introduced classes of lower and upper semilinear copulas by two new classes, called vertical and horizontal semilinear copulas, and characterize the corresponding class of diagonals. The new copulas are in essence asymmetric, with maximum asymmetry given by 1 / 16 . The only symmetric members turn out to be also lower and upper semilinear copulas, namely convex sums of Π and M .

Asymptotic analysis of a class of functional equations and applications

P. J. Grabner, H. Prodinger, R. F. Tichy (1993)

Journal de théorie des nombres de Bordeaux

Flajolet and Richmond have invented a method to solve a large class of divide-and-conquer recursions. The essential part of it is the asymptotic analysis of a certain generating function for z by means of the Mellin transform. In this paper this type of analysis is performed for a reasonably large class of generating functions fulfilling a functional equation with polynomial coefficients. As an application, the average life time of a party of N people is computed, where each person advances one...

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2008)

ESAIM: Probability and Statistics

Let ( X t , t 0 ) be a Lévy process started at 0 , with Lévy measure ν . We consider the first passage time T x of ( X t , t 0 ) to level x > 0 , and K x : = X T x - 𝑥 the overshoot and L x : = x - X T 𝑥 - the undershoot. We first prove that the Laplace transform of the random triple ( T x , K x , L x ) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x , where T x ˜ denotes a suitable renormalization of T x .

Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes

Bernard Roynette, Pierre Vallois, Agnès Volpi (2007)

ESAIM: Probability and Statistics

Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν. We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and Kx := XTx - x the overshoot and Lx := x- XTx- the undershoot. We first prove that the Laplace transform of the random triple (Tx,Kx,Lx) satisfies some kind of integral equation. Second, assuming that ν admits exponential moments, we show that ( T x ˜ , K x , L x ) converges in distribution as x → ∞, where T x ˜ denotes a suitable renormalization of Tx.


Asymptotic behaviour of stochastic systems with conditionally exponential decay property

Agnieszka Jurlewicz, Aleksander Weron, Karina Weron (1996)

Applicationes Mathematicae

A new class of CED systems, providing insight into behaviour of physical disordered materials, is introduced. It includes systems in which the conditionally exponential decay property can be attached to each entity. A limit theorem for the normalized minimum of a CED system is proved. Employing different stable schemes the universal characteristics of the behaviour of such systems are derived.

Asymptotically optimal quantization schemes for Gaussian processes on Hilbert spaces*

Harald Luschgy, Gilles Pagès, Benedikt Wilbertz (2010)

ESAIM: Probability and Statistics

We describe quantization designs which lead to asymptotically and order optimal functional quantizers for Gaussian processes in a Hilbert space setting. Regular variation of the eigenvalues of the covariance operator plays a crucial role to achieve these rates. For the development of a constructive quantization scheme we rely on the knowledge of the eigenvectors of the covariance operator in order to transform the problem into a finite dimensional quantization problem of normal distributions. ...

Basic bounds of Fréchet classes

Jaroslav Skřivánek (2014)

Kybernetika

Algebraic bounds of Fréchet classes of copulas can be derived from the fundamental attributes of the associated copulas. A minimal system of algebraic bounds and related basic bounds can be defined using properties of pointed convex polyhedral cones and their relationship with non-negative solutions of systems of linear homogeneous Diophantine equations, largely studied in Combinatorics. The basic bounds are an algebraic improving of the Fréchet-Hoeffding bounds. We provide conditions of compatibility...

Bernstein inequality for the parameter of the pth order autoregressive process AR(p)

Samir Benaissa (2006)

Applicationes Mathematicae

The autoregressive process takes an important part in predicting problems leading to decision making. In practice, we use the least squares method to estimate the parameter θ̃ of the first-order autoregressive process taking values in a real separable Banach space B (ARB(1)), if it satisfies the following relation: X ̃ t = θ ̃ X ̃ t - 1 + ε ̃ t . In this paper we study the convergence in distribution of the linear operator I ( θ ̃ T , θ ̃ ) = ( θ ̃ T - θ ̃ ) θ ̃ T - 2 for ||θ̃|| > 1 and so we construct inequalities of Bernstein type for this operator.

Currently displaying 161 – 180 of 1158