Limit theorems for -lattice valued random variables
The limit behaviour of the extreme order statistics arising from n two-dimensional independent and non-identically distributed random vectors is investigated. Necessary and sufficient conditions for the weak convergence of the distribution function (d.f.) of the vector of extremes, as well as the form of the limit d.f.'s, are obtained. Moreover, conditions for the components of the vector of extremes to be asymptotically independent are studied.
Observations are made on a point process in in a window of volume . The observation, or ‘score’ at a point , here denoted , is a function of the points within a random distance of . When the input is a Poisson or binomial point process, the large limit theory for the total score , when properly scaled and centered, is well understood. In this paper we establish general laws of large numbers, variance asymptotics, and central limit theorems for the total score for Gibbsian input ....
We have random number of independent diffusion processes with absorption on boundaries in some region at initial time t = 0. The initial numbers and positions of processes in region is defined by the Poisson random measure. It is required to estimate the number of the unabsorbed processes for the fixed time τ > 0. The Poisson random measure depends on τ and τ → ∞.
Random walks in random scenery are processes defined by , where and are two independent sequences of i.i.d. random variables with values in and respectively. We suppose that the distributions of and belong to the normal basin of attraction of stable distribution of index and . When and , a functional limit theorem has been established in (Z. Wahrsch. Verw. Gebiete50 (1979) 5–25) and a local limit theorem in (Ann. Probab.To appear). In this paper, we establish the convergence in...
This work is supported by Bulgarian NFSI, grant No. MM–704/97The regenerative excursion process Z(t), t = 0, 1, 2, . . . is constructed by two independent sequences X = {Xi , i ≥ 1} and Z = {Ti , (Zi (t), 0 ≤ t < Ti ), i ≥ 1}. For the embedded alternating renewal process, with interarrival times Xi – the time for the installation and Ti – the time for the work, are proved some limit theorems for the spent worktime and the residual worktime, when at least one of the means of Xi and Ti is infinite. ...
Consider an irreducible, aperiodic and positive recurrent discrete time Markov chain (Xn,n ≥ 0) with invariant distribution μ. We shall investigate the long time behaviour of some functionals of the chain, in particular the additive functional S n = ∑ i = 1 n f ( X i ) for a possibly non square integrable functionf. To this end we shall link ergodic properties of the chain to mixing properties, extending known results in the continuous time case. We will then use existing results of convergence...
Let be a discrete or continuous-time Markov process with state space where is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. is assumed to be a Markov additive process. In particular, this implies that the first component is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process is shown to satisfy the...
We consider the stochastic recursion for Markov dependent coefficients (Aₙ,Bₙ) ∈ ℝ⁺ × ℝ. We prove the central limit theorem, the local limit theorem and the renewal theorem for the partial sums Sₙ = X₁+ ⋯ + Xₙ.