A singular large deviations phenomenon
We present here the results of the investigation on approximation by the Poisson law of distributions of sums of random variables in the scheme of series. We give the results pertaining to the behaviour of large deviation probabilities and asymptotic expansions, to the method of cumulants, with the aid of which our results have been obtained.
We prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical...
We prove asymptotic equipartition properties for simple hierarchical structures (modelled as multitype Galton-Watson trees) and networked structures (modelled as randomly coloured random graphs). For example, for large n, a networked data structure consisting of n units connected by an average number of links of order n / log n can be coded by about H × n bits, where H is an explicitly defined entropy. The main technique in our proofs are large deviation principles for suitably defined empirical...
We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two...