Displaying 261 – 280 of 1890

Showing per page

Asymptotic Feynman–Kac formulae for large symmetrised systems of random walks

Stefan Adams, Tony Dorlas (2008)

Annales de l'I.H.P. Probabilités et statistiques

We study large deviations principles for N random processes on the lattice ℤd with finite time horizon [0, β] under a symmetrised measure where all initial and terminal points are uniformly averaged over random permutations. That is, given a permutation σ of N elements and a vector (x1, …, xN) of N initial points we let the random processes terminate in the points (xσ(1), …, xσ(N)) and then sum over all possible permutations and initial points, weighted with an initial distribution. We prove level-two...

Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps

Martine Babillot, Marc Peigné (2006)

Bulletin de la Société Mathématique de France

We consider a large class of non compact hyperbolic manifolds M = n / Γ with cusps and we prove that the winding process ( Y t ) generated by a closed 1 -form supported on a neighborhood of a cusp 𝒞 , satisfies a limit theorem, with an asymptotic stable law and a renormalising factor depending only on the rank of the cusp 𝒞 and the Poincaré exponent δ of Γ . No assumption on the value of δ is required and this theorem generalises previous results due to Y. Guivarc’h, Y. Le Jan, J. Franchi and N. Enriquez.

Asymptotic normality of randomly truncated stochastic algorithms

Jérôme Lelong (2013)

ESAIM: Probability and Statistics

We study the convergence rate of randomly truncated stochastic algorithms, which consist in the truncation of the standard Robbins–Monro procedure on an increasing sequence of compact sets. Such a truncation is often required in practice to ensure convergence when standard algorithms fail because the expected-value function grows too fast. In this work, we give a self contained proof of a central limit theorem for this algorithm under local assumptions on the expected-value function, which are fairly...

Asymptotic properties and optimization of some non-Markovian stochastic processes

Evgueni I. Gordienko, Antonio Garcia, Juan Ruiz de Chavez (2009)

Kybernetika

We study the limit behavior of certain classes of dependent random sequences (processes) which do not possess the Markov property. Assuming these processes depend on a control parameter we show that the optimization of the control can be reduced to a problem of nonlinear optimization. Under certain hypotheses we establish the stability of such optimization problems.

Asymptotic properties of power variations of Lévy processes

Jean Jacod (2007)

ESAIM: Probability and Statistics

We determine the asymptotic behavior of the realized power variations, and more generally of sums of a given function f evaluated at the increments of a Lévy process between the successive times iΔn for i = 0,1,...,n. One can elucidate completely the first order behavior, that is the convergence in probability of such sums, possibly after normalization and/or centering: it turns out that there is a rather wide variety of possible behaviors, depending on the structure of jumps and on the chosen...

Asymptotic rate of convergence in the degenerate U-statistics of second order

Olga Yanushkevichiene (2010)

Banach Center Publications

Let X,X₁,...,Xₙ be independent identically distributed random variables taking values in a measurable space (Θ,ℜ ). Let h(x,y) and g(x) be real valued measurable functions of the arguments x,y ∈ Θ and let h(x,y) be symmetric. We consider U-statistics of the type T ( X , . . . , X ) = n - 1 1 i L e t q i ( i 1 ) b e e i g e n v a l u e s o f t h e H i l b e r t - S c h m i d t o p e r a t o r a s s o c i a t e d w i t h t h e k e r n e l h ( x , y ) , a n d q b e t h e l a r g e s t i n a b s o l u t e v a l u e o n e . W e p r o v e t h a t Δn = ρ(T(X₁,...,Xₙ),T(G₁,..., Gₙ)) ≤ (cβ’1/6)/(√(|q₁|) n1/12) , where G i , 1 ≤ i ≤ n, are i.i.d. Gaussian random vectors, ρ is the Kolmogorov (or uniform) distance and β ' : = E | h ( X , X ) | ³ + E | h ( X , X ) | 18 / 5 + E | g ( X ) | ³ + E | g ( X ) | 18 / 5 + 1 < .

Asymptotic sampling formulae for 𝛬 -coalescents

Julien Berestycki, Nathanaël Berestycki, Vlada Limic (2014)

Annales de l'I.H.P. Probabilités et statistiques

We present a robust method which translates information on the speed of coming down from infinity of a genealogical tree into sampling formulae for the underlying population. We apply these results to population dynamics where the genealogy is given by a 𝛬 -coalescent. This allows us to derive an exact formula for the asymptotic behavior of the site and allele frequency spectrum and the number of segregating sites, as the sample size tends to . Some of our results hold in the case of a general 𝛬 -coalescent...

Asymptotic spectral analysis of generalized Erdős-Rényi random graphs

Song Liang, Nobuaki Obata, Shuji Takahashi (2007)

Banach Center Publications

Motivated by the Watts-Strogatz model for a complex network, we introduce a generalization of the Erdős-Rényi random graph. We derive a combinatorial formula for the moment sequence of its spectral distribution in the sparse limit.

Asymptotic spectral analysis of growing graphs: odd graphs and spidernets

Daisuke Igarashi, Nobuaki Obata (2006)

Banach Center Publications

Two new examples are given for illustrating the method of quantum decomposition in the asymptotic spectral analysis for a growing family of graphs. The odd graphs form a growing family of distance-regular graphs and the two-sided Rayleigh distribution appears in the limit of vacuum spectral distribution of the adjacency matrix. For a spidernet as well as for a growing family of spidernets the vacuum distribution of the adjacency matrix is the free Meixner law. These distributions are calculated...

Currently displaying 261 – 280 of 1890