Displaying 121 – 140 of 144

Showing per page

Convergence theorems for set-valued conditional expectations

Nikolaos S. Papageorgiou (1993)

Commentationes Mathematicae Universitatis Carolinae

In this paper we prove two convergence theorems for set-valued conditional expectations. The first is a set-valued generalization of Levy’s martingale convergence theorem, while the second involves a nonmonotone sequence of sub σ -fields.

Convergence to infinitely divisible distributions with finite variance for some weakly dependent sequences

Jérôme Dedecker, Sana Louhichi (2005)

ESAIM: Probability and Statistics

We continue the investigation started in a previous paper, on weak convergence to infinitely divisible distributions with finite variance. In the present paper, we study this problem for some weakly dependent random variables, including in particular associated sequences. We obtain minimal conditions expressed in terms of individual random variables. As in the i.i.d. case, we describe the convergence to the gaussian and the purely non-gaussian parts of the infinitely divisible limit. We also discuss...

Convergence to infinitely divisible distributions with finite variance for some weakly dependent sequences

Jérôme Dedecker, Sana Louhichi (2010)

ESAIM: Probability and Statistics

We continue the investigation started in a previous paper, on weak convergence to infinitely divisible distributions with finite variance. In the present paper, we study this problem for some weakly dependent random variables, including in particular associated sequences. We obtain minimal conditions expressed in terms of individual random variables. As in the i.i.d. case, we describe the convergence to the Gaussian and the purely non-Gaussian parts of the infinitely divisible limit. We also discuss...

Convergence to stable laws and a local limit theorem for stochastic recursions

Mariusz Mirek (2010)

Colloquium Mathematicae

We consider the random recursion X x = M X n - 1 x + Q + N ( X n - 1 x ) , where x ∈ ℝ and (Mₙ,Qₙ,Nₙ) are i.i.d., Qₙ has a heavy tail with exponent α > 0, the tail of Mₙ is lighter and N ( X n - 1 x ) is smaller at infinity, than M X n - 1 x . Using the asymptotics of the stationary solutions we show that properly normalized Birkhoff sums S x = k = 0 n X k x converge weakly to an α-stable law for α ∈ (0,2]. The related local limit theorem is also proved.

Convergence to the brownian Web for a generalization of the drainage network model

Cristian Coletti, Glauco Valle (2014)

Annales de l'I.H.P. Probabilités et statistiques

We introduce a system of one-dimensional coalescing nonsimple random walks with long range jumps allowing paths that can cross each other and are dependent even before coalescence. We show that under diffusive scaling this system converges in distribution to the Brownian Web.

Coupling a branching process to an infinite dimensional epidemic process***

Andrew D. Barbour (2010)

ESAIM: Probability and Statistics

Branching process approximation to the initial stages of an epidemic process has been used since the 1950's as a technique for providing stochastic counterparts to deterministic epidemic threshold theorems. One way of describing the approximation is to construct both branching and epidemic processes on the same probability space, in such a way that their paths coincide for as long as possible. In this paper, it is shown, in the context of a Markovian model of parasitic infection, that coincidence...

Cramér type moderate deviations for Studentized U-statistics

Tze Leng Lai, Qi-Man Shao, Qiying Wang (2011)

ESAIM: Probability and Statistics

Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x ∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.

Cramér type moderate deviations for Studentized U-statistics******

Tze Leng Lai, Qi-Man Shao, Qiying Wang (2012)

ESAIM: Probability and Statistics

Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.

Currently displaying 121 – 140 of 144