Laplace asymptotic expansions for Gaussian functional integrals.
Sufficient and necessary conditions for equivalence of the distributions of the solutions of some linear stochastic equations in Hilbert spaces are given. Some facts in the theory of perturbations of semigroup generators and Zabczyk's results on law equivalence are used.
We prove that simple transformations are disjoint from those which are infinitely divisible and embeddable in a flow. This is a reinforcement of a previous result of A. del Junco and M. Lemańczyk [1] who showed that simple transformations are disjoint from Gaussian processes.
Brownian motions defined as linear transformations of two independent Brownian motions are studied, together with certain orthogonal decompositions of Brownian filtrations.
The paper presents a discussion on linear transformations of a Wiener process. The considered processes are collections of stochastic integrals of non-random functions w.r.t. Wiener process. We are interested in conditions under which the transformed process is a Wiener process, a Brownian bridge or an Ornstein –Uhlenbeck process.
We study the existence and the regularity of the local time of filtered white noises . We will also give Chung’s form of the law of iterated logarithm for , this shows that the result on the Hölder regularity, with respect to time, of the local time is sharp.