Fast sets and points for fractional brownian motion
We apply the Feynman-Kac formula to compute the λ-Poisson kernels and λ-Green functions for half-spaces or balls in hyperbolic spaces. We present known results in a unified way and also provide new formulas for the λ-Poisson kernels and λ-Green functions of half-spaces in ℍⁿ and for balls in real and complex hyperbolic spaces.
Motivated by applications in queueing fluid models and ruin theory, we analyze the asymptotics of , where , i = 1,...,n, are independent fractional Brownian motions with Hurst parameters and λ₁,...,λₙ > 0. The asymptotics takes one of three different qualitative forms, depending on the value of .
À l’aide des notions de fonctions de Young et d’entropie métrique, nous donnons des conditions suffisantes d’existence d’une version à trajectoires continues et nous déterminons des modules de continuité uniforme pour les trajectoires de cette version dans des cas plus généraux que les fonctions aléatoires réelles gaussiennes.
Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph...