Sectorial local non-determinism and the geometry of the Brownian sheet.
In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous-time with partial observation. For a controlled linear system where both the state and observation processes are driven by fractional Brownian motions, we describe explicitly the optimal control policy which minimizes a quadratic performance criterion. Actually, we show that a separation principle holds, i.e., the optimal control separates into two stages based on optimal...
Let be the Ornstein-Uhlenbeck operator which is self-adjoint with respect to the Gauss measure on We prove a sharp estimate of the operator norm of the imaginary powers of on
Under regularity assumptions, we establish a sharp large deviation principle for Hermitian quadratic forms of stationary Gaussian processes. Our result is similar to the well-known Bahadur-Rao theorem [2] on the sample mean. We also provide several examples of application such as the sharp large deviation properties of the Neyman-Pearson likelihood ratio test, of the sum of squares, of the Yule-Walker estimator of the parameter of a stable autoregressive Gaussian process, and finally of the empirical...
We investigate the small deviations under various norms for stable processes defined by the convolution of a smooth function with a real SαS Lévy process. We show that the small ball exponent is uniquely determined by the norm and by the behaviour of f at zero, which extends the results of Lifshits and Simon, Ann. Inst. H. Poincaré Probab. Statist.41 (2005) 725–752 where this was proved for f being a power function (Riemann-Liouville processes). In the Gaussian case, the same generality as...
A certain inequality conjectured by Vershynin is studied. It is proved that for any symmetric convex body K ⊆ ℝⁿ with inradius w and γₙ(K) ≤ 1/2 we have for any s ∈ [0,1], where γₙ is the standard Gaussian probability measure. Some natural corollaries are deduced. Another conjecture of Vershynin is proved to be false.
This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process,...
Let , be two independent, -dimensional bifractional Brownian motions with respective indices and . Assume . One of the main motivations of this paper is to investigate smoothness of the collision local time where denotes the Dirac delta function. By an elementary method we show that is smooth in the sense of Meyer-Watanabe if and only if .