Über starke Konvergenz in der Theorie der c-Gleichverteilung.
Dans ce travail, nous présentons une nouvelle caractérisation de la norme des espaces de Besov-Orlicz associés à la -fonction exponentielle pour . Nous utilisons cette nouvelle norme et un lemme de Marcus et Pisier [15], pour démontrer un critère de tension et de régularité dans les espaces de Besov-Orlicz pour . Nous étudions ensuite dans les espaces de Besov-Orlicz pour , des théorèmes limites pour les mesures d’occupations du temps local du processus stable symétrique d’indice , ce qui...
We investigate in this paper the properties of some dilatations or contractions of a sequence (αn)n≥1 of Lr-optimal quantizers of an -valued random vector defined in the probability space with distribution . To be precise, we investigate the Ls-quantization rate of sequences when or s ∈ (r, +∞) and . We show that for a wide family of distributions, one may always find parameters (θ,µ) such that (αnθ,µ)n≥1 is Ls-rate-optimal. For the Gaussian and the exponential distributions we show...
We consider the one-sided exit problem – also called one-sided barrier problem – for (-fractionally) integrated random walks and Lévy processes. Our main result is that there exists a positive, non-increasing function such that the probability that any -fractionally integrated centered Lévy processes (or random walk) with some finite exponential moment stays below a fixed level until time behaves as for large . We also investigate when the fixed level can be replaced by a different barrier...