Comportement asymptotique du nombre de tours effectués par la trajectoire brownienne plane
Let be a Brownian motion, and let be the space of all continuous periodic functions with period 1. It is shown that the set of all such that the stochastic convolution , does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.
In this paper we study asymptotic behavior of convex rearrangements of Lévy processes. In particular we obtain Glivenko-Cantelli-type strong limit theorems for the convexifications when the corresponding Lévy measure is regularly varying at + with exponent α ∈ (1,2).
In this note, we prove a version of the conjectured duality for Schramm-Loewner Evolutions, by establishing exact identities in distribution between some boundary arcs of chordal , , and appropriate versions of , .
We propose some construction of enhanced Gaussian processes using Karhunen-Loeve expansion. We obtain a characterization and some criterion of existence and uniqueness. Using rough-path theory, we derive some Wong-Zakai Theorem.