On some regularity properties of solutions to stochastic evolution equations in Hilbert spaces
Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.
We show that the main result of [1] on sufficiency of existence of a majorizing measure for boundedness of a stochastic process can be naturally split in two theorems, each of independent interest. The first is that the existence of a majorizing measure is sufficient for the existence of a sequence of admissible nets (as recently introduced by Talagrand [5]), and the second that the existence of a sequence of admissible nets is sufficient for sample boundedness of a stochastic process with bounded...
be a sub-fractional Brownian motion with . We establish the existence, the joint continuity and the Hölder regularity of the local time of . We will also give Chung’s form of the law of iterated logarithm for . This results are obtained with the decomposition of the sub-fractional Brownian motion into the sum of fractional Brownian motion plus a stochastic process with absolutely continuous trajectories. This decomposition is given by Ruiz de Chavez and Tudor [10].
Dans cet article, nous pénalisons la loi d’une araignée brownienne prenant ses valeurs dans un ensemble fini de demi-droites concourantes, avec un poids égal à , où est un réel positif, une famille de réels indexés par , un paramètre réel, la distance de à l’origine, () la demi-droite sur laquelle se trouve , le temps local de à l’origine, et la constante de normalisation. Nous montrons que la famille des mesures de probabilité obtenue par ces pénalisations converge vers...