Displaying 321 – 340 of 457

Showing per page

Second-order asymptotic expansion for a non-synchronous covariation estimator

Arnak Dalalyan, Nakahiro Yoshida (2011)

Annales de l'I.H.P. Probabilités et statistiques

In this paper, we consider the problem of estimating the covariation of two diffusion processes when observations are subject to non-synchronicity. Building on recent papers [Bernoulli11 (2005) 359–379, Ann. Inst. Statist. Math.60 (2008) 367–406], we derive second-order asymptotic expansions for the distribution of the Hayashi–Yoshida estimator in a fairly general setup including random sampling schemes and non-anticipative random drifts. The key steps leading to our results are a second-order decomposition...

Separation principle in the fractional Gaussian linear-quadratic regulator problem with partial observation

Marina L. Kleptsyna, Alain Le Breton, Michel Viot (2008)

ESAIM: Probability and Statistics

In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous-time with partial observation. For a controlled linear system where both the state and observation processes are driven by fractional Brownian motions, we describe explicitly the optimal control policy which minimizes a quadratic performance criterion. Actually, we show that a separation principle holds, i.e., the optimal control separates into two stages based on optimal...

Sharp inequalities for Riesz transforms

Adam Osękowski (2014)

Studia Mathematica

We establish the following sharp local estimate for the family R j j = 1 d of Riesz transforms on d . For any Borel subset A of d and any function f : d , A | R j f ( x ) | d x C p | | f | | L p ( d ) | A | 1 / q , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, C p = [ 2 q + 2 Γ ( q + 1 ) / π q + 1 k = 0 ( - 1 ) k / ( 2 k + 1 ) q + 1 ] 1 / q , 1 < p < 2, and C p = [ 4 Γ ( q + 1 ) / π q k = 0 1 / ( 2 k + 1 ) q ] 1 / q , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.

Sharp Logarithmic Inequalities for Two Hardy-type Operators

Adam Osękowski (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: S f ( x ) = 1 / | B ( 0 , | x | ) | B ( 0 , | x | ) f ( t ) d t , T f ( x ) = 1 / | B ( x , | x | ) | B ( x , | x | ) f ( t ) d t for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.

Currently displaying 321 – 340 of 457