Displaying 161 – 180 of 589

Showing per page

Excited against the tide: a random walk with competing drifts

Mark Holmes (2012)

Annales de l'I.H.P. Probabilités et statistiques

We study excited random walks in i.i.d. random cookie environments in high dimensions, where the k th cookie at a site determines the transition probabilities (to the left and right) for the k th departure from that site. We show that in high dimensions, when the expected right drift of the first cookie is sufficiently large, the velocity is strictly positive, regardless of the strengths and signs of subsequent cookies. Under additional conditions on the cookie environment, we show that the limiting...

Excited random walk.

Benjamini, Itai, Wilson, David B. (2003)

Electronic Communications in Probability [electronic only]

Expansion and random walks in SL d ( / p n ) : I

Jean Bourgain, Alex Gamburd (2008)

Journal of the European Mathematical Society

We prove that the Cayley graphs of SL d ( / p n ) are expanders with respect to the projection of any fixed elements in SL d ( ) generating a Zariski dense subgroup.

Currently displaying 161 – 180 of 589