Characterization of a regular family of semimartingales by line integrals.
We show that for critical reversible attractive Nearest Particle Systems all equilibrium measures are convex combinations of the upper invariant equilibrium measure and the point mass at all zeros, provided the underlying renewal sequence possesses moments of order strictly greater than and obeys some natural regularity conditions.
This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci.45 (2009) 745–785) to characterize unitary stationary independent increment gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate Hudson–Parthasarathy equation is proved.
Our purpose is to investigate properties for processes with stationary and independent increments under -expectation. As applications, we prove the martingale characterization of -Brownian motion and present a pathwise decomposition theorem for generalized -Brownian motion.
In a continuous time random walk (CTRW), a random waiting time precedes each random jump. The CTRW model is useful in physics, to model diffusing particles. Its scaling limit is a time-changed process, whose densities solve an anomalous diffusion equation. This paper develops limit theory and governing equations for cluster CTRW, in which a random number of jumps cluster together into a single jump. The clustering introduces a dependence between the waiting times and jumps that significantly affects...
The cogrowth exponent of a group controls the random walk spectrum. We prove that for a generic group (in the density model) this exponent is arbitrarily close to that of a free group. Moreover, this exponent is stable under random quotients of torsion-free hyperbolic groups.