Real zeros of random algebraic polynomials with binomial elements.
Étant donné un semi-flot mesurable préservant une mesure de probabilité sur un espace , nous considérons les moyennes ergodiques où est un “poids” à support compact sur , c’est-à-dire que vérifie et . Nous démontrons la convergence p.p. de ces moyennes quand si appartient à l’espace de Lorentz défini par le poids qui est le réarrangé décroissant de . En particulier, pour , on obtient la convergence p.p. des moyennes de Césarò d’ordre
Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on general properties of ambit fields. Moreover, it develops the concept of tempo-spatial stochastic volatility/intermittency within ambit fields. Various types of volatility modulation ranging from stochastic scaling...
The properties of a certain generalization of simple random walk to continuous time are analyzed in this paper. After the definition, its transition probabilities, and the differential equations satisfied by those, are obtained. Under some conditions, the convergence of this random walk to a Wiener process is then established. Finally, absorption probabilities and mean times until absorption are calculated, giving some insight into the behaviour of the process.
It has been proved recently that the two-direction refinement equation of the form can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation has also various interesting applications....
In this paper we consider BSDEs with Lipschitz coefficient reflected on two discontinuous (RCLL) barriers. In this case, we prove first the existence and uniqueness of the solution, then we also prove the convergence of the solutions of the penalized equations to the solution of the RBSDE. Since the method used in the case of continuous barriers (see Cvitanic and Karatzas, Ann. Probab.24 (1996) 2024–2056 and Lepeltier and San Martín, J. Appl. Probab.41 (2004) 162–175) does not work, we develop...