Displaying 81 – 100 of 173

Showing per page

Refracted Lévy processes

A. E. Kyprianou, R. L. Loeffen (2010)

Annales de l'I.H.P. Probabilités et statistiques

Motivated by classical considerations from risk theory, we investigate boundary crossing problems for refracted Lévy processes. The latter is a Lévy process whose dynamics change by subtracting off a fixed linear drift (of suitable size) whenever the aggregate process is above a pre-specified level. More formally, whenever it exists, a refracted Lévy process is described by the unique strong solution to the stochastic differential equation dUt=−δ1{Ut>b} dt+dXt, where X={Xt : t≥0} is a Lévy...

Régularité Besov des trajectoires du processus intégral de Skorokhod

Gérard Lorang (1996)

Studia Mathematica

Let W t : 0 t 1 be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process u t : 0 t 1 belonging to the space 2 , 1 (see Definition II.2). The Skorokhod integral U t = ʃ 0 t u δ W is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process t U t . More precisely, we prove the following THEOREM III.1. (1)If 0 < α < 1/2 and u p , 1 with 1/α < p < ∞, then a.s. t U t p , q α for all q ∈ [1,∞], and t U t p , α , 0 . (2) For every even integer p ≥...

Currently displaying 81 – 100 of 173