The growth exponent for planar loop-erased random walk.
In this paper we study the error rate of RNA synthesis in the look-ahead model for the random walk of RNA polymerase along DNA during transcription. The model’s central assumption is the existence of a window of activity in which ribonucleoside triphosphates (rNTPs) bind reversibly to the template DNA strand before being hydrolyzed and linked covalently to the nascent RNA chain. An unknown, but important, integer parameter of this model is the window...
We study the large deviation principle for stochastic processes of the form , where is a sequence of i.i.d.r.v.'s with mean zero and . We present necessary and sufficient conditions for the large deviation principle for these stochastic processes in several situations. Our approach is based in showing the large deviation principle of the finite dimensional distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential asymptotic equicontinuity condition,...
We study the large deviation principle for stochastic processes of the form , where is a sequence of i.i.d.r.v.’s with mean zero and . We present necessary and sufficient conditions for the large deviation principle for these stochastic processes in several situations. Our approach is based in showing the large deviation principle of the finite dimensional distributions and an exponential asymptotic equicontinuity condition. In order to get the exponential asymptotic equicontinuity condition,...
This paper is devoted to a detailed and rigorous study of the magnetization at high temperature for a p-spin interaction model with external field, generalizing the Sherrington-Kirkpatrick model. In particular, we prove that (the mean of a spin with respect to the Gibbs measure) converges to an explicitly given random variable, and that ⟨σ₁⟩,...,⟨σₙ⟩ are asymptotically independent.