First hitting times of simple random walks on graphs with congestion points.
The object of this research in the queueing theory is a theorem about the Strong-Law-of-Large-Numbers (SLLN) under the conditions of heavy traffic in a multiserver open queueing network. SLLN is known as a fluid limit or fluid approximation. In this work, we prove that the long-term average rate of growth of the queue length process of a multiserver open queueing network under heavy traffic strongly converges to a particular vector of rates. SLLN is proved for the values of an important probabilistic...
À l’aide des notions de fonctions de Young et d’entropie métrique, nous donnons des conditions suffisantes d’existence d’une version à trajectoires continues et nous déterminons des modules de continuité uniforme pour les trajectoires de cette version dans des cas plus généraux que les fonctions aléatoires réelles gaussiennes.