Displaying 121 – 140 of 165

Showing per page

Expansion and random walks in SL d ( / p n ) : I

Jean Bourgain, Alex Gamburd (2008)

Journal of the European Mathematical Society

We prove that the Cayley graphs of SL d ( / p n ) are expanders with respect to the projection of any fixed elements in SL d ( ) generating a Zariski dense subgroup.

Explicit Karhunen-Loève expansions related to the Green function of the Laplacian

J.-R. Pycke (2006)

Banach Center Publications

Karhunen-Loève expansions of Gaussian processes have numerous applications in Probability and Statistics. Unfortunately the set of Gaussian processes with explicitly known spectrum and eigenfunctions is narrow. An interpretation of three historical examples enables us to understand the key role of the Laplacian. This allows us to extend the set of Gaussian processes for which a very explicit Karhunen-Loève expansion can be derived.

Exponential ergodicity of semilinear equations driven by Lévy processes in Hilbert spaces

Anna Chojnowska-Michalik, Beniamin Goldys (2015)

Banach Center Publications

We study convergence to the invariant measure for a class of semilinear stochastic evolution equations driven by Lévy noise, including the case of cylindrical noise. For a certain class of equations we prove the exponential rate of convergence in the norm of total variation. Our general result is applied to a number of specific equations driven by cylindrical symmetric α-stable noise and/or cylindrical Wiener noise. We also consider the case of a "singular" Wiener process with unbounded covariance...

Exponential inequalities and functional central limit theorems for random fields

Jérôme Dedecker (2001)

ESAIM: Probability and Statistics

We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform φ -mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients....

Exponential inequalities and functional central limit theorems for random fields

Jérôme Dedecker (2010)

ESAIM: Probability and Statistics

We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed Brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform ϕ-mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients. ...

Currently displaying 121 – 140 of 165