Displaying 141 – 160 of 165

Showing per page

Exponential inequalities for VLMC empirical trees

Antonio Galves, Véronique Maume-Deschamps, Bernard Schmitt (2008)

ESAIM: Probability and Statistics

A seminal paper by Rissanen, published in 1983, introduced the class of Variable Length Markov Chains and the algorithm Context which estimates the probabilistic tree generating the chain. Even if the subject was recently considered in several papers, the central question of the rate of convergence of the algorithm remained open. This is the question we address here. We provide an exponential upper bound for the probability of incorrect estimation of the probabilistic tree, as a function...

Exponential martingales and CIR model

Wojciech Szatzschneider (2008)

Banach Center Publications

With the use of exponential martingales and the Girsanov theorem we show how to calculate bond prices in a large variety of square root processes. We clarify and correct several errors that abound in financial literature concerning these processes. The most important topics are linear risk premia, the Longstaff double square model, and calculations concerning correlated CIR processes.

Exponential smoothing for irregular data

Tomáš Cipra (2006)

Applications of Mathematics

Various types of exponential smoothing for data observed at irregular time intervals are surveyed. Double exponential smoothing and some modifications of Holt’s method for this type of data are suggested. A real data example compares double exponential smoothing and Wright’s modification of Holt’s method for data observed at irregular time intervals.

Exponential smoothing for irregular time series

Tomáš Cipra, Tomáš Hanzák (2008)

Kybernetika

The paper deals with extensions of exponential smoothing type methods for univariate time series with irregular observations. An alternative method to Wright’s modification of simple exponential smoothing based on the corresponding ARIMA process is suggested. Exponential smoothing of order m for irregular data is derived. A similar method using a DLS **discounted least squares** estimation of polynomial trend of order m is derived as well. Maximum likelihood parameters estimation for forecasting...

Exponential smoothing for time series with outliers

Tomáš Hanzák, Tomáš Cipra (2011)

Kybernetika

Recursive time series methods are very popular due to their numerical simplicity. Their theoretical background is usually based on Kalman filtering in state space models (mostly in dynamic linear systems). However, in time series practice one must face frequently to outlying values (outliers), which require applying special methods of robust statistics. In the paper a simple robustification of Kalman filter is suggested using a simple truncation of the recursive residuals. Then this concept is applied...

Extrapolation in fractional autoregressive models

Jiří Anděl, Georg Neuhaus (1998)

Kybernetika

The naïve and the least-squares extrapolation are investigated in the fractional autoregressive models of the first order. Some explicit formulas are derived for the one and two steps ahead extrapolation.

Extremal and additive processes generated by Pareto distributed random vectors

Kosto V. Mitov, Saralees Nadarajah (2014)

ESAIM: Probability and Statistics

Pareto distributions are most popular for modeling heavy tailed data. Here, we obtain weak limits of a sequence of extremal and a sequence of additive processes constructed by a series of Bernoulli point processes with bivariate Pareto space components. For the limiting processes we derive the one dimensional distributions in explicit forms. Some of the main properties of these distributions are also proved.

Extremal (in)dependence of a maximum autoregressive process

Marta Ferreira (2013)

Discussiones Mathematicae Probability and Statistics

Maximum autoregressive processes like MARMA (Davis and Resnick, [5] 1989) or power MARMA (Ferreira and Canto e Castro, [12] 2008) have singular joint distributions, an unrealistic feature in most applications. To overcome this pitfall, absolute continuous versions were presented in Alpuim and Athayde [2] (1990) and Ferreira and Canto e Castro [14] (2010b), respectively. We consider an extended version of absolute continuous maximum autoregressive processes that accommodates both asymptotic tail...

Extreme distribution functions of copulas

Manuel Úbeda-Flores (2008)

Kybernetika

In this paper we study some properties of the distribution function of the random variable C(X,Y) when the copula of the random pair (X,Y) is M (respectively, W) – the copula for which each of X and Y is almost surely an increasing (respectively, decreasing) function of the other –, and C is any copula. We also study the distribution functions of M(X,Y) and W(X,Y) given that the joint distribution function of the random variables X and Y is any copula.

Extreme order statistics in an equally correlated Gaussian array

Mateusz Wiśniewski (1994)

Applicationes Mathematicae

This paper contains the results concerning the weak convergence of d-dimensional extreme order statistics in a Gaussian, equally correlated array. Three types of limit distributions are found and sufficient conditions for the existence of these distributions are given.

Currently displaying 141 – 160 of 165