Displaying 1821 – 1840 of 3391

Showing per page

On suprema of Lévy processes and application in risk theory

Renming Song, Zoran Vondraček (2008)

Annales de l'I.H.P. Probabilités et statistiques

Let X̂=C−Y where Y is a general one-dimensional Lévy process and C an independent subordinator. Consider the times when a new supremum of X̂ is reached by a jump of the subordinator C. We give a necessary and sufficient condition in order for such times to be discrete. When this is the case and X̂ drifts to −∞, we decompose the absolute supremum of X̂ at these times, and derive a Pollaczek–Hinchin-type formula for the distribution function of the supremum.

On Talagrand's Admissible Net Approach to Majorizing Measures and Boundedness of Stochastic Processes

Witold Bednorz (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that the main result of [1] on sufficiency of existence of a majorizing measure for boundedness of a stochastic process can be naturally split in two theorems, each of independent interest. The first is that the existence of a majorizing measure is sufficient for the existence of a sequence of admissible nets (as recently introduced by Talagrand [5]), and the second that the existence of a sequence of admissible nets is sufficient for sample boundedness of a stochastic process with bounded...

On the adaptive wavelet estimation of a multidimensional regression function under α -mixing dependence: Beyond the standard assumptions on the noise

Christophe Chesneau (2013)

Commentationes Mathematicae Universitatis Carolinae

We investigate the estimation of a multidimensional regression function f from n observations of an α -mixing process ( Y , X ) , where Y = f ( X ) + ξ , X represents the design and ξ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of f in its construction) or it is supposed that ξ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework....

On the asymptotic variance in the central limit theorem for particle filters

Benjamin Favetto (2012)

ESAIM: Probability and Statistics

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends...

On the asymptotic variance in the central limit theorem for particle filters

Benjamin Favetto (2012)

ESAIM: Probability and Statistics

Particle filter algorithms approximate a sequence of distributions by a sequence of empirical measures generated by a population of simulated particles. In the context of Hidden Markov Models (HMM), they provide approximations of the distribution of optimal filters associated to these models. For a given set of observations, the behaviour of particle filters, as the number of particles tends to infinity, is asymptotically Gaussian, and the asymptotic variance in the central limit theorem depends...

Currently displaying 1821 – 1840 of 3391