On the detection of a finite binary sequence in the presence of an interfering binary sequence
Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by , where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by . We use q(X) to characterize the distance between ⟨X⟩ and the class of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities hold for every continuous BMO-martingale X.
In this paper, we study additive coalescents. Using their representation as fragmentation processes, we prove that the law of a large class of eternal additive coalescents is absolutely continuous with respect to the law of the standard additive coalescent on any bounded time interval.
Necessary and sufficient conditions are found for the exponential Orlicz norm (generated by with 0 < p ≤ 2) of or to be finite, where is a standard Brownian motion and τ is a stopping time for B. The conditions are in terms of the moments of the stopping time τ. For instance, we find that as soon as for some constant C > 0 as k → ∞ (or equivalently ). In particular, if τ ∼ Exp(λ) or then the last condition is satisfied, and we obtain with some universal constant K > 0....