Displaying 21 – 40 of 79

Showing per page

Stability of stochastic processes defined by integral functionals

K. Urbanik (1992)

Studia Mathematica

The paper is devoted to the study of integral functionals ʃ 0 f ( X ( t , ω ) ) d t for continuous nonincreasing functions f and nonnegative stochastic processes X(t,ω) with stationary and independent increments. In particular, a concept of stability defined in terms of the functionals ʃ 0 f ( a X ( t , ω ) ) d t with a ∈ (0,∞) is discussed.

Stationary Quantum Markov processes as solutions of stochastic differential equations

Jürgen Hellmich, Claus Köstler, Burkhard Kümmerer (1998)

Banach Center Publications

From the operator algebraic approach to stationary (quantum) Markov processes there has emerged an axiomatic definition of quantum white noise. The role of Brownian motion is played by an additive cocycle with respect to its time evolution. In this report we describe some recent work, showing that this general structure already allows a rich theory of stochastic integration and stochastic differential equations. In particular, if a quantum Markov process is represented by a unitary cocycle, we can...

Stochastic calculus with respect to fractional Brownian motion

David Nualart (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ( 0 , 1 ) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1 / 2 , the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô calculus cannot be used. Different approaches have been introduced to construct stochastic integrals with respect to fBm:...

Stochastic evolution equations driven by Liouville fractional Brownian motion

Zdzisław Brzeźniak, Jan van Neerven, Donna Salopek (2012)

Czechoslovak Mathematical Journal

Let H be a Hilbert space and E a Banach space. We set up a theory of stochastic integration of ( H , E ) -valued functions with respect to H -cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter 0 < β < 1 . For 0 < β < 1 2 we show that a function Φ : ( 0 , T ) ( H , E ) is stochastically integrable with respect to an H -cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an H -cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations...

Stochastic fuzzy differential equations with an application

Marek T. Malinowski, Mariusz Michta (2011)

Kybernetika

In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.

Stochastic integration of functions with values in a Banach space

J. M. A. M. van Neerven, L. Weis (2005)

Studia Mathematica

Let H be a separable real Hilbert space and let E be a real Banach space. In this paper we construct a stochastic integral for certain operator-valued functions Φ: (0,T) → ℒ(H,E) with respect to a cylindrical Wiener process W H ( t ) t [ 0 , T ] . The construction of the integral is given by a series expansion in terms of the stochastic integrals for certain E-valued functions. As a substitute for the Itô isometry we show that the square expectation of the integral equals the radonifying norm of an operator which is...

Currently displaying 21 – 40 of 79