Stochastic calculus and initial value analysis on the one dimensional diffusions.
We produce a stochastic regularization of the Poisson-Sigma model of Cattaneo-Felder, which is an analogue regularization of Klauder’s stochastic regularization of the hamiltonian path integral [23] in field theory. We perform also semi-classical limits.
We study the relationship between the translation operator, its dual and the pathwise integral on the Poisson space with weak conditions on the processes.
Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.
Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.
For stochastic differential equations of pure jumps, though the Poincaré inequality does not hold in general, we show that W1H transportation inequalities hold for its invariant probability measure and for its process-level law on right continuous paths space in the L1-metric or in uniform metrics, under the dissipative condition. Several applications to concentration inequalities are given.