Page 1 Next

Displaying 1 – 20 of 77

Showing per page

The d X ( t ) = X b ( X ) d t + X σ ( X ) d W equation and financial mathematics. I

Josef Štěpán, Petr Dostál (2003)

Kybernetika

The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients b and σ being generally C ( + ) -progressive processes. Any weak solution X is called a ( b , σ ) -stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution μ σ of X in C ( + ) in the special case of a diffusion volatility σ ( X , t ) = σ ˜ ( X ( t ) ) . A martingale option pricing method is presented.

The d X ( t ) = X b ( X ) d t + X σ ( X ) d W equation and financial mathematics. II

Josef Štěpán, Petr Dostál (2003)

Kybernetika

This paper continues the research started in [J. Štěpán and P. Dostál: The d X ( t ) = X b ( X ) d t + X σ ( X ) d W equation and financial mathematics I. Kybernetika 39 (2003)]. Considering a stock price X ( t ) born by the above semilinear SDE with σ ( x , t ) = σ ˜ ( x ( t ) ) , we suggest two methods how to compute the price of a general option g ( X ( T ) ) . The first, a more universal one, is based on a Monte Carlo procedure while the second one provides explicit formulas. We in this case need an information on the two dimensional distributions of ( Y ( s ) , τ ( s ) ) for s 0 , where Y is the exponential...

Currently displaying 1 – 20 of 77

Page 1 Next