Set-valued Stratonovich integral
The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
The purpose of the paper is to introduce a set-valued Stratonovich integral driven by a one-dimensional Brownian motion. We discuss the existence of this integral and investigate its properties.
We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α ∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...
We consider the approximate Euler scheme for Lévy-driven stochastic differential equations. We study the rate of convergence in law of the paths. We show that when approximating the small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them. For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some α∈ (1,2), we obtain an error of order 1/√n with a computational cost of order nα. For a similar error when neglecting the...