Lp-theory for the stochastic heat equation with infinite-dimensional fractional noise
In this article, we consider the stochastic heat equation , with random coefficientsf and gk, driven by a sequence (βk)k of i.i.d. fractional Brownian motions of index H>1/2. Using the Malliavin calculus techniques and a p-th moment maximal inequality for the infinite sum of Skorohod integrals with respect to (βk)k, we prove that the equation has a unique solution (in a Banach space of summability exponent p ≥ 2), and this solution is Hölder continuous in both time and space.