The multi-dimensional super-replication problem under gamma constraints
In this paper we study the parabolic Anderson equation , , , where the -field and the -field are -valued, is the diffusion constant, and is the discrete Laplacian. The -field plays the role of adynamic random environmentthat drives the equation. The initial condition , , is taken to be non-negative and bounded. The solution of the parabolic Anderson equation describes the evolution of a field of particles performing independent simple random walks with binary branching: particles jump...
In this paper, we study the pricing of credit risky securities under a three-firms contagion model. The interacting default intensities not only depend on the defaults of other firms in the system, but also depend on the default-free interest rate which follows jump diffusion stochastic differential equation, which extends the previous three-firms models (see R. A. Jarrow and F. Yu (2001), S. Y. Leung and Y. K. Kwok (2005), A. Wang and Z. Ye (2011)). By using the method of change of measure and...
The Tracy–Widom distribution is the large dimensional limit of the top eigenvalue of random matrix ensembles. We use the stochastic Airy operator representation to show that as the tail of the Tracy–Widom distribution satisfies
Let (Ω,,P) be a probability space and let τ: ℝ×Ω → ℝ be a function which is strictly increasing and continuous with respect to the first variable, measurable with respect to the second variable. Given the set of all continuous probability distribution solutions of the equation we determine the set of all its probability distribution solutions.