Théorie spectrale d'un opérateur de transition sur un espace métrique compact
In this note we describe recent results on semiclassical random walk associated to a probability density which may also concentrate as the semiclassical parameter goes to zero. The main result gives a spectral asymptotics of the close to eigenvalues. This problem was studied in [1] and relies on a general factorization result for pseudo-differential operators. In this note we just sketch the proof of this second theorem. At the end of the note, using the factorization, we give a new proof of the...
Soit Q une probabilité de transition sur un espace mesurable E, admettant une probabilité invariante, soit (Xn)n une chaîne de Markov associée à Q, et soit ξ une fonction réelle mesurable sur E, et Sn=∑nk=1ξ(Xk). Sous des hypothèses fonctionnelles sur l’action de Q et des noyaux de Fourier Q(t), nous étudions la vitesse de convergence dans le théorème limite central pour la suite . Selon les hypothèses nous obtenons une vitesse enn−τ/2 pour tout τ<1, ou bien en n−1/2. Nous appliquons la...