Displaying 141 – 160 of 193

Showing per page

Regular behavior at infinity of stationary measures of stochastic recursion on NA groups

Dariusz Buraczewski, Ewa Damek (2010)

Colloquium Mathematicae

Let N be a simply connected nilpotent Lie group and let S = N ( ) d be a semidirect product, ( ) d acting on N by diagonal automorphisms. Let (Qₙ,Mₙ) be a sequence of i.i.d. random variables with values in S. Under natural conditions, including contractivity in the mean, there is a unique stationary measure ν on N for the Markov process Xₙ = MₙXn-1 + Qₙ. We prove that for an appropriate homogeneous norm on N there is χ₀ such that l i m t t χ ν x : | x | > t = C > 0 . In particular, this applies to classical Poisson kernels on symmetric spaces,...

Remarks on the boolean convolution and Kerov's α-transformation

Anna Dorota Krystek (2006)

Banach Center Publications

This paper consists of two parts. The first part is devoted to the study of continuous diagrams and their connections with the boolean convolution. In the second part we investigate the rectangular Young diagrams and respective discrete measures. We recall the definition of Kerov's α-transformation of diagrams, define the α-transformation of finitely supported discrete measures and generalize the notion of the α-transformation.

Renewal Processes of Mittag-Leffler and Wright Type

Mainardi, Francesco, Gorenflo, Rudolf, Vivoli, Alessandro (2005)

Fractional Calculus and Applied Analysis

2000 MSC: 26A33, 33E12, 33E20, 44A10, 44A35, 60G50, 60J05, 60K05.After sketching the basic principles of renewal theory we discuss the classical Poisson process and offer two other processes, namely the renewal process of Mittag-Leffler type and the renewal process of Wright type, so named by us because special functions of Mittag-Leffler and of Wright type appear in the definition of the relevant waiting times. We compare these three processes with each other, furthermore consider corresponding...

Risk-sensitive Markov stopping games with an absorbing state

Jaicer López-Rivero, Rolando Cavazos-Cadena, Hugo Cruz-Suárez (2022)

Kybernetika

This work is concerned with discrete-time Markov stopping games with two players. At each decision time player II can stop the game paying a terminal reward to player I, or can let the system to continue its evolution. In this latter case player I applies an action affecting the transitions and entitling him to receive a running reward from player II. It is supposed that player I has a no-null and constant risk-sensitivity coefficient, and that player II tries to minimize the utility of player I....

Small positive values for supercritical branching processes in random environment

Vincent Bansaye, Christian Böinghoff (2014)

Annales de l'I.H.P. Probabilités et statistiques

Branching Processes in Random Environment (BPREs) ( Z n : n 0 ) are the generalization of Galton–Watson processes where in each generation the reproduction law is picked randomly in an i.i.d. manner. In the supercritical case, the process survives with positive probability and then almost surely grows geometrically. This paper focuses on rare events when the process takes positive but small values for large times. We describe the asymptotic behavior of ( 1 Z n k | Z 0 = i ) , k , i as n . More precisely, we characterize the exponential...

Stability of Markov processes nonhomogeneous in time

Marta Tyran-Kamińska (1999)

Annales Polonici Mathematici

We study the asymptotic behaviour of discrete time processes which are products of time dependent transformations defined on a complete metric space. Our sufficient condition is applied to products of Markov operators corresponding to stochastically perturbed dynamical systems and fractals.

Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

In this continuation of the preceding paper (Part I), we consider a sequence ( F ) n 0 of i.i.d. random Lipschitz mappings → , where is a proper metric space. We investigate existence and uniqueness of invariant measures, as well as recurrence and ergodicity of the induced stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . The main results concern the case when the associated Lipschitz constants are log-centered. Principal tools are local contractivity, as considered in detail in Part I, the Chacon-Ornstein...

Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity

Marc Peigné, Wolfgang Woess (2011)

Colloquium Mathematicae

Consider a proper metric space and a sequence ( F ) n 0 of i.i.d. random continuous mappings → . It induces the stochastic dynamical system (SDS) X x = F . . . F ( x ) starting at x ∈ . In this and the subsequent paper, we study existence and uniqueness of invariant measures, as well as recurrence and ergodicity of this process. In the present first part, we elaborate, improve and complete the unpublished work of Martin Benda on local contractivity, which merits publicity and provides an important tool for studying stochastic...

Stopping Markov processes and first path on graphs

Giacomo Aletti, Ely Merzbach (2006)

Journal of the European Mathematical Society

Given a strongly stationary Markov chain (discrete or continuous) and a finite set of stopping rules, we show a noncombinatorial method to compute the law of stopping. Several examples are presented. The problem of embedding a graph into a larger but minimal graph under some constraints is studied. Given a connected graph, we show a noncombinatorial manner to compute the law of a first given path among a set of stopping paths.We prove the existence of a minimal Markov chain without oversized information....

Currently displaying 141 – 160 of 193